Telegram Group & Telegram Channel
🔍 Как скрытые состояния в HMM отличаются от скрытых представлений в RNN и как это влияет на интерпретируемость

🧠 Скрытые марковские модели (HMM):
В HMM скрытые состояния — это дискретные латентные переменные с четким вероятностным значением. Каждое состояние соответствует конкретному режиму или явлению (например, «дождливо» или «солнечно» в модели погоды), что способствует интерпретируемости. Переходы между состояниями описываются матрицей вероятностей.

🤖 Рекуррентные нейронные сети (RNN):
В отличие от HMM, скрытые состояния в RNN — это непрерывные векторы, которые обучаются автоматически с помощью градиентного спуска. Они могут кодировать сложные аспекты истории последовательности, но не всегда легко интерпретируемы. Каждый элемент скрытого состояния может быть связан с более сложными зависимостями, которые сложно трактовать в явной форме.

💡 Главная проблема:
При попытке трактовать скрытые состояния в RNN как дискретные состояния в HMM можно столкнуться с ошибками. Непрерывные скрытые представления могут не иметь четких «меток», что затрудняет их интерпретацию и объяснение. Важно учитывать, что RNN может захватывать более сложные, но менее интерпретируемые зависимости.

⚠️ Как избежать ошибок:
Не стоит пытаться трактовать скрытые состояния RNN как дискретные. Лучше использовать методы интерпретации, такие как визуализация внимания, чтобы понять, как скрытые состояния влияют на выход модели.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/915
Create:
Last Update:

🔍 Как скрытые состояния в HMM отличаются от скрытых представлений в RNN и как это влияет на интерпретируемость

🧠 Скрытые марковские модели (HMM):
В HMM скрытые состояния — это дискретные латентные переменные с четким вероятностным значением. Каждое состояние соответствует конкретному режиму или явлению (например, «дождливо» или «солнечно» в модели погоды), что способствует интерпретируемости. Переходы между состояниями описываются матрицей вероятностей.

🤖 Рекуррентные нейронные сети (RNN):
В отличие от HMM, скрытые состояния в RNN — это непрерывные векторы, которые обучаются автоматически с помощью градиентного спуска. Они могут кодировать сложные аспекты истории последовательности, но не всегда легко интерпретируемы. Каждый элемент скрытого состояния может быть связан с более сложными зависимостями, которые сложно трактовать в явной форме.

💡 Главная проблема:
При попытке трактовать скрытые состояния в RNN как дискретные состояния в HMM можно столкнуться с ошибками. Непрерывные скрытые представления могут не иметь четких «меток», что затрудняет их интерпретацию и объяснение. Важно учитывать, что RNN может захватывать более сложные, но менее интерпретируемые зависимости.

⚠️ Как избежать ошибок:
Не стоит пытаться трактовать скрытые состояния RNN как дискретные. Лучше использовать методы интерпретации, такие как визуализация внимания, чтобы понять, как скрытые состояния влияют на выход модели.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/915

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

Библиотека собеса по Data Science | вопросы с собеседований from tr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA